Format:
dataset %>%
filter(between(variable, start, end))
Note that between is nested within filter.
Start and end dates usually use the {lubridate} package, and the formatymd("2015-12-31")
Remember that filteR is for selecting Rows because it ends with an R.
Let's step through some filter Examples!
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)
[1] 15524
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)covid_dates
[1] 15524
# A tibble: 15,524 x 18 subject_id fake_first_name fake_last_name gender pan_day test_id clinic_name <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> 1 1412 jhezane westerling female 4 covid inpatient … 2 533 penny targaryen female 7 covid clinical l… 3 9134 grunt rivers male 7 covid clinical l… 4 8518 melisandre swyft female 8 covid clinical l… 5 8967 rolley karstark male 8 covid emergency … 6 11048 megga karstark female 8 covid oncology d… 7 663 ithoke targaryen male 9 covid clinical l… 8 2158 ravella frey female 9 covid emergency … 9 3794 styr tyrell male 9 covid clinical l…10 4706 wynafryd seaworth male 9 covid clinical l…# … with 15,514 more rows, and 11 more variables: result <chr>,# demo_group <chr>, age <dbl>, drive_thru_ind <dbl>, ct_result <dbl>,# orderset <dbl>, payor_group <chr>, patient_class <chr>, col_rec_tat <dbl>,# rec_ver_tat <dbl>, fake_date <date>
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)covid_dates %>%# selected 3 columns# see how date changes w/filter select(fake_date, result, gender)
[1] 15524
# A tibble: 15,524 x 3 fake_date result gender <date> <chr> <chr> 1 2020-03-05 negative female 2 2020-03-08 negative female 3 2020-03-08 negative male 4 2020-03-09 negative female 5 2020-03-09 negative male 6 2020-03-09 negative female 7 2020-03-10 negative male 8 2020-03-10 negative female 9 2020-03-10 negative male 10 2020-03-10 negative male # … with 15,514 more rows
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)covid_dates %>%# selected 3 columns# see how date changes w/filter select(fake_date, result, gender) %>% filter(between(fake_date, ymd("2020-03-01"), ymd("2020-03-31")))
[1] 15524
# A tibble: 2,421 x 3 fake_date result gender <date> <chr> <chr> 1 2020-03-05 negative female 2 2020-03-08 negative female 3 2020-03-08 negative male 4 2020-03-09 negative female 5 2020-03-09 negative male 6 2020-03-09 negative female 7 2020-03-10 negative male 8 2020-03-10 negative female 9 2020-03-10 negative male 10 2020-03-10 negative male # … with 2,411 more rows
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)covid_dates %>%# selected 3 columns# see how date changes w/filter select(fake_date, result, gender) %>% filter(between(fake_date, ymd("2020-03-01"), ymd("2020-03-31")))# see how many rows now# check dates - between is inclusive# of end dates - tests on 3/1# and on 3/31 are included.# Format:# filter(between(variable, date, date)) <br> # filter(between(variable, date, date)) <br>
[1] 15524
# A tibble: 2,421 x 3 fake_date result gender <date> <chr> <chr> 1 2020-03-05 negative female 2 2020-03-08 negative female 3 2020-03-08 negative male 4 2020-03-09 negative female 5 2020-03-09 negative male 6 2020-03-09 negative female 7 2020-03-10 negative male 8 2020-03-10 negative female 9 2020-03-10 negative male 10 2020-03-10 negative male # … with 2,411 more rows
Example 1/4: Filter Rows Between Dates
# how many rows when you startnrow(covid_dates)covid_dates %>%# selected 3 columns# see how date changes w/filter select(fake_date, result, gender) %>% filter(between(fake_date, ymd("2020-03-01"), ymd("2020-03-31")))# see how many rows now# check dates - between is inclusive# of end dates - tests on 3/1# and on 3/31 are included.# Format:# filter(between(variable, date, date)) <br> # filter(between(variable, date, date)) <br>
[1] 15524
# A tibble: 2,421 x 3 fake_date result gender <date> <chr> <chr> 1 2020-03-05 negative female 2 2020-03-08 negative female 3 2020-03-08 negative male 4 2020-03-09 negative female 5 2020-03-09 negative male 6 2020-03-09 negative female 7 2020-03-10 negative male 8 2020-03-10 negative female 9 2020-03-10 negative male 10 2020-03-10 negative male # … with 2,411 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)
[1] 64
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates
[1] 64
# A tibble: 64 x 29 id age sex race diagnosis diagnosis_type time_to_transpl… <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> 1 1 61 1 0 acute my… 1 5.16 2 2 62 1 1 non-Hodg… 0 79.0 3 3 63 0 1 non-Hodg… 0 35.6 4 4 33 0 1 Hodgkin … 0 33.0 5 5 54 0 1 acute ly… 0 11.4 6 6 55 1 1 myelofib… 1 2.43 7 7 67 1 1 acute my… 1 9.59 8 8 51 1 1 acute my… 1 NA 9 9 44 0 0 multiple… 0 43.4 10 10 59 1 1 chronic … 0 92.7 # … with 54 more rows, and 22 more variables: prior_radiation <dbl>,# prior_chemo <dbl>, prior_transplant <dbl>, recipient_cmv <dbl>,# donor_cmv <dbl>, donor_sex <dbl>, tnc_dose <dbl>, cd34_dose <dbl>,# cd3_dose <dbl>, cd8_dose <dbl>, tbi_dose <dbl>, c1_c2 <dbl>, a_ki_rs <dbl>,# cmv <dbl>, time_to_cmv <dbl>, agvhd <dbl>, time_to_agvhd <dbl>,# cgvhd <dbl>, time_to_cgvhd <dbl>, fake_dx_date <date>,# fake_bmt_date <date>, fake_agvhd_date <date>
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age)
[1] 64
# A tibble: 64 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-04-09 1 61 2 2021-05-04 1 62 3 2017-10-07 0 63 4 2017-07-23 0 33 5 2015-10-13 0 54 6 2015-01-17 1 55 7 2015-08-20 1 67 8 NA 1 51 9 2018-05-31 0 4410 2022-06-17 1 59# … with 54 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>% filter(between(fake_bmt_date, ymd("2008-01-01"), ymd("2018-12-31")))
[1] 64
# A tibble: 53 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-04-09 1 61 2 2017-10-07 0 63 3 2017-07-23 0 33 4 2015-10-13 0 54 5 2015-01-17 1 55 6 2015-08-20 1 67 7 2018-05-31 0 44 8 2018-01-18 1 45 9 2016-04-23 1 5710 2015-03-21 0 52# … with 43 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>% filter(between(fake_bmt_date, ymd("2008-01-01"), ymd("2018-12-31"))) %>% filter(between(age, 40, 70))
[1] 64
# A tibble: 44 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-04-09 1 61 2 2017-10-07 0 63 3 2015-10-13 0 54 4 2015-01-17 1 55 5 2015-08-20 1 67 6 2018-05-31 0 44 7 2018-01-18 1 45 8 2016-04-23 1 57 9 2015-03-21 0 5210 2015-12-21 0 62# … with 34 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>% filter(between(fake_bmt_date, ymd("2008-01-01"), ymd("2018-12-31"))) %>% filter(between(age, 40, 70)) %>% arrange(fake_bmt_date) # sort
[1] 64
# A tibble: 44 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-01-17 1 55 2 2015-01-20 1 61 3 2015-02-09 1 57 4 2015-02-23 1 48 5 2015-03-05 0 61 6 2015-03-07 1 49 7 2015-03-20 1 57 8 2015-03-21 0 52 9 2015-03-21 1 6210 2015-04-09 1 61# … with 34 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>% filter(between(fake_bmt_date, ymd("2008-01-01"), ymd("2018-12-31"))) %>% filter(between(age, 40, 70)) %>% arrange(fake_bmt_date) # sort# see how many rows now# sequential filters combine with AND# check dates# Format:# filter(between(variable, start, end)) <br> # filter(between(variable, start, end)) <br>
[1] 64
# A tibble: 44 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-01-17 1 55 2 2015-01-20 1 61 3 2015-02-09 1 57 4 2015-02-23 1 48 5 2015-03-05 0 61 6 2015-03-07 1 49 7 2015-03-20 1 57 8 2015-03-21 0 52 9 2015-03-21 1 6210 2015-04-09 1 61# … with 34 more rows
Example 2/4: Find Bone Marrow Transplants in 2008-2018 in 40-70 yo
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>% filter(between(fake_bmt_date, ymd("2008-01-01"), ymd("2018-12-31"))) %>% filter(between(age, 40, 70)) %>% arrange(fake_bmt_date) # sort# see how many rows now# sequential filters combine with AND# check dates# Format:# filter(between(variable, start, end)) <br> # filter(between(variable, start, end)) <br>
[1] 64
# A tibble: 44 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-01-17 1 55 2 2015-01-20 1 61 3 2015-02-09 1 57 4 2015-02-23 1 48 5 2015-03-05 0 61 6 2015-03-07 1 49 7 2015-03-20 1 57 8 2015-03-21 0 52 9 2015-03-21 1 6210 2015-04-09 1 61# … with 34 more rows
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)
[1] 64
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates
[1] 64
# A tibble: 64 x 29 id age sex race diagnosis diagnosis_type time_to_transpl… <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> 1 1 61 1 0 acute my… 1 5.16 2 2 62 1 1 non-Hodg… 0 79.0 3 3 63 0 1 non-Hodg… 0 35.6 4 4 33 0 1 Hodgkin … 0 33.0 5 5 54 0 1 acute ly… 0 11.4 6 6 55 1 1 myelofib… 1 2.43 7 7 67 1 1 acute my… 1 9.59 8 8 51 1 1 acute my… 1 NA 9 9 44 0 0 multiple… 0 43.4 10 10 59 1 1 chronic … 0 92.7 # … with 54 more rows, and 22 more variables: prior_radiation <dbl>,# prior_chemo <dbl>, prior_transplant <dbl>, recipient_cmv <dbl>,# donor_cmv <dbl>, donor_sex <dbl>, tnc_dose <dbl>, cd34_dose <dbl>,# cd3_dose <dbl>, cd8_dose <dbl>, tbi_dose <dbl>, c1_c2 <dbl>, a_ki_rs <dbl>,# cmv <dbl>, time_to_cmv <dbl>, agvhd <dbl>, time_to_agvhd <dbl>,# cgvhd <dbl>, time_to_cgvhd <dbl>, fake_dx_date <date>,# fake_bmt_date <date>, fake_agvhd_date <date>
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_agvhd_date, sex, age)
[1] 64
# A tibble: 64 x 3 fake_agvhd_date sex age <date> <dbl> <dbl> 1 2015-07-24 1 61 2 2026-09-09 1 62 3 2018-01-27 0 63 4 2019-11-26 0 33 5 2016-01-05 0 54 6 2015-05-13 1 55 7 2015-11-18 1 67 8 NA 1 51 9 2018-06-21 0 4410 2024-04-09 1 59# … with 54 more rows
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_agvhd_date, sex, age) %>% filter(fake_agvhd_date > today() - months(24))
[1] 64
# A tibble: 16 x 3 fake_agvhd_date sex age <date> <dbl> <dbl> 1 2026-09-09 1 62 2 2019-11-26 0 33 3 2024-04-09 1 59 4 2034-07-21 0 61 5 2021-02-26 1 62 6 2024-05-21 0 51 7 2022-08-19 0 62 8 2021-09-22 0 52 9 2027-08-11 0 4810 2020-04-26 1 4611 2023-02-08 1 5112 2022-03-19 1 5613 2019-03-31 1 6214 2020-09-26 1 5815 2029-01-28 0 4116 2029-05-25 1 50
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_agvhd_date, sex, age) %>% filter(fake_agvhd_date > today() - months(24)) %>% arrange(fake_agvhd_date) # sort
[1] 64
# A tibble: 16 x 3 fake_agvhd_date sex age <date> <dbl> <dbl> 1 2019-03-31 1 62 2 2019-11-26 0 33 3 2020-04-26 1 46 4 2020-09-26 1 58 5 2021-02-26 1 62 6 2021-09-22 0 52 7 2022-03-19 1 56 8 2022-08-19 0 62 9 2023-02-08 1 5110 2024-04-09 1 5911 2024-05-21 0 5112 2026-09-09 1 6213 2027-08-11 0 4814 2029-01-28 0 4115 2029-05-25 1 5016 2034-07-21 0 61
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_agvhd_date, sex, age) %>% filter(fake_agvhd_date > today() - months(24)) %>% arrange(fake_agvhd_date) # sort# see how many rows now# note we have some "future" fake dates# Format:# filter(between(variable, start, end)) <br> # filter(between(variable, start, end)) <br>
[1] 64
# A tibble: 16 x 3 fake_agvhd_date sex age <date> <dbl> <dbl> 1 2019-03-31 1 62 2 2019-11-26 0 33 3 2020-04-26 1 46 4 2020-09-26 1 58 5 2021-02-26 1 62 6 2021-09-22 0 52 7 2022-03-19 1 56 8 2022-08-19 0 62 9 2023-02-08 1 5110 2024-04-09 1 5911 2024-05-21 0 5112 2026-09-09 1 6213 2027-08-11 0 4814 2029-01-28 0 4115 2029-05-25 1 5016 2034-07-21 0 61
Example 3/4: Find Acute GVHD Cases in last 24 Months
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_agvhd_date, sex, age) %>% filter(fake_agvhd_date > today() - months(24)) %>% arrange(fake_agvhd_date) # sort# see how many rows now# note we have some "future" fake dates# Format:# filter(between(variable, start, end)) <br> # filter(between(variable, start, end)) <br>
[1] 64
# A tibble: 16 x 3 fake_agvhd_date sex age <date> <dbl> <dbl> 1 2019-03-31 1 62 2 2019-11-26 0 33 3 2020-04-26 1 46 4 2020-09-26 1 58 5 2021-02-26 1 62 6 2021-09-22 0 52 7 2022-03-19 1 56 8 2022-08-19 0 62 9 2023-02-08 1 5110 2024-04-09 1 5911 2024-05-21 0 5112 2026-09-09 1 6213 2027-08-11 0 4814 2029-01-28 0 4115 2029-05-25 1 5016 2034-07-21 0 61
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)
[1] 64
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates
[1] 64
# A tibble: 64 x 29 id age sex race diagnosis diagnosis_type time_to_transpl… <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> 1 1 61 1 0 acute my… 1 5.16 2 2 62 1 1 non-Hodg… 0 79.0 3 3 63 0 1 non-Hodg… 0 35.6 4 4 33 0 1 Hodgkin … 0 33.0 5 5 54 0 1 acute ly… 0 11.4 6 6 55 1 1 myelofib… 1 2.43 7 7 67 1 1 acute my… 1 9.59 8 8 51 1 1 acute my… 1 NA 9 9 44 0 0 multiple… 0 43.4 10 10 59 1 1 chronic … 0 92.7 # … with 54 more rows, and 22 more variables: prior_radiation <dbl>,# prior_chemo <dbl>, prior_transplant <dbl>, recipient_cmv <dbl>,# donor_cmv <dbl>, donor_sex <dbl>, tnc_dose <dbl>, cd34_dose <dbl>,# cd3_dose <dbl>, cd8_dose <dbl>, tbi_dose <dbl>, c1_c2 <dbl>, a_ki_rs <dbl>,# cmv <dbl>, time_to_cmv <dbl>, agvhd <dbl>, time_to_agvhd <dbl>,# cgvhd <dbl>, time_to_cgvhd <dbl>, fake_dx_date <date>,# fake_bmt_date <date>, fake_agvhd_date <date>
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age)
[1] 64
# A tibble: 64 x 3 fake_bmt_date sex age <date> <dbl> <dbl> 1 2015-04-09 1 61 2 2021-05-04 1 62 3 2017-10-07 0 63 4 2017-07-23 0 33 5 2015-10-13 0 54 6 2015-01-17 1 55 7 2015-08-20 1 67 8 NA 1 51 9 2018-05-31 0 4410 2022-06-17 1 59# … with 54 more rows
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>%# wday gives weekday 1-7, labeled# note one NA date mutate(weekday = wday(fake_bmt_date, label=TRUE))
[1] 64
# A tibble: 64 x 4 fake_bmt_date sex age weekday <date> <dbl> <dbl> <ord> 1 2015-04-09 1 61 Thu 2 2021-05-04 1 62 Tue 3 2017-10-07 0 63 Sat 4 2017-07-23 0 33 Sun 5 2015-10-13 0 54 Tue 6 2015-01-17 1 55 Sat 7 2015-08-20 1 67 Thu 8 NA 1 51 <NA> 9 2018-05-31 0 44 Thu 10 2022-06-17 1 59 Fri # … with 54 more rows
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>%# wday gives weekday 1-7, labeled# note one NA date mutate(weekday = wday(fake_bmt_date, label=TRUE)) %>%# %in% must be in a vector of values filter(wday(fake_bmt_date) %in% c(1,7))
[1] 64
# A tibble: 17 x 4 fake_bmt_date sex age weekday <date> <dbl> <dbl> <ord> 1 2017-10-07 0 63 Sat 2 2017-07-23 0 33 Sun 3 2015-01-17 1 55 Sat 4 2016-04-23 1 57 Sat 5 2015-03-21 0 52 Sat 6 2016-08-06 0 38 Sat 7 2015-03-21 1 62 Sat 8 2015-04-18 0 52 Sat 9 2015-08-22 0 45 Sat 10 2015-05-31 1 48 Sun 11 2026-02-01 0 48 Sun 12 2015-03-07 1 49 Sat 13 2016-05-22 1 58 Sun 14 2015-08-30 0 39 Sun 15 2022-02-13 1 56 Sun 16 2015-06-28 1 62 Sun 17 2016-05-08 1 54 Sun
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>%# wday gives weekday 1-7, labeled# note one NA date mutate(weekday = wday(fake_bmt_date, label=TRUE)) %>%# %in% must be in a vector of values filter(wday(fake_bmt_date) %in% c(1,7)) %>% arrange(fake_bmt_date) # sort
[1] 64
# A tibble: 17 x 4 fake_bmt_date sex age weekday <date> <dbl> <dbl> <ord> 1 2015-01-17 1 55 Sat 2 2015-03-07 1 49 Sat 3 2015-03-21 0 52 Sat 4 2015-03-21 1 62 Sat 5 2015-04-18 0 52 Sat 6 2015-05-31 1 48 Sun 7 2015-06-28 1 62 Sun 8 2015-08-22 0 45 Sat 9 2015-08-30 0 39 Sun 10 2016-04-23 1 57 Sat 11 2016-05-08 1 54 Sun 12 2016-05-22 1 58 Sun 13 2016-08-06 0 38 Sat 14 2017-07-23 0 33 Sun 15 2017-10-07 0 63 Sat 16 2022-02-13 1 56 Sun 17 2026-02-01 0 48 Sun
Example 4/4: Find BMTs on (Fake) Weekends
# how many rows when you startnrow(bmt_dates)bmt_dates %>%# selected 3 columns# see how date changes w/filter select(fake_bmt_date, sex, age) %>%# wday gives weekday 1-7, labeled# note one NA date mutate(weekday = wday(fake_bmt_date, label=TRUE)) %>%# %in% must be in a vector of values filter(wday(fake_bmt_date) %in% c(1,7)) %>% arrange(fake_bmt_date) # sort# see how many rows now# lots of handy functions in lubridate
[1] 64
# A tibble: 17 x 4 fake_bmt_date sex age weekday <date> <dbl> <dbl> <ord> 1 2015-01-17 1 55 Sat 2 2015-03-07 1 49 Sat 3 2015-03-21 0 52 Sat 4 2015-03-21 1 62 Sat 5 2015-04-18 0 52 Sat 6 2015-05-31 1 48 Sun 7 2015-06-28 1 62 Sun 8 2015-08-22 0 45 Sat 9 2015-08-30 0 39 Sun 10 2016-04-23 1 57 Sat 11 2016-05-08 1 54 Sun 12 2016-05-22 1 58 Sun 13 2016-08-06 0 38 Sat 14 2017-07-23 0 33 Sun 15 2017-10-07 0 63 Sat 16 2022-02-13 1 56 Sun 17 2026-02-01 0 48 Sun
Format:
dataset %>%
filter(between(variable, start, end))
Note that between is nested within filter.
Start and end dates usually use the {lubridate} package, and the formatymd("2015-12-31")
Remember that filteR is for selecting Rows because it ends with an R.
Let's step through some filter Examples!
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |